Prediction of the response of groundwater recharge to climate changes in Heihe River basin, China

2020 
Accurate estimation of groundwater recharge is critical for evaluating the available freshwater resources in the Heihe River basin. Based on the statistical downscaling method coupled with the soil and water assessment tool, this study predicted the variations in precipitation, surface runoff, lateral flow, evapotranspiration, and groundwater recharge in the Heihe River basin under the A1B scenarios in the future 45 years (2019–2063). It was found that relative errors (Re), coefficient of determination (R2), and coefficient of Nash–Sutcliffe efficiency (Ens) at calibration and validation period were 19%, 0.90, 0.82 and 12%, 0.83, 0.75, respectively. These results indicated that the new SWAT models can be properly applied for predictions in the Heihe River basin. The next 45 years were divided into four stages, and precipitation change will follow the order stage III > stage I > stage IV > stage II. In addition, temperatures will gradually increase with time. Precipitation and evapotranspiration will be the major input and output of water resources, respectively. The surface runoff value with large precipitation stage will be nearly six times that of lateral flow. The daily highest temperature affects evapotranspiration, and the temporal variation rate of evapotranspiration is low because of extensive distribution of forests and grasslands. The groundwater recharge will reach a maximum in 2037–2046, which will be nearly two times that in 2019–2029. Groundwater recharge will be small in both 2047–2063 and 2030–2036. Precipitation is a major influence factor on groundwater recharge, but temperature slightly affects groundwater recharge. Underlying surface conditions such as land use, soil type, and properties also affect groundwater recharge. The precipitation after 2047 will not be very large, and temperatures will be high, and large evapotranspiration will lead to a rapid decrease in groundwater recharge.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    4
    Citations
    NaN
    KQI
    []