Analysis of Microstructural Changes Induced by Linear Friction Welding in a Nickel-Base Superalloy

2011 
A detailed microstructural analysis was performed on a difficult-to-weld nickel-base superalloy, IN 738, subjected to linear friction welding and Gleeble thermomechanical simulation, to understand the microstructural changes induced in the material. Correlations between the microstructures of the welded and simulated materials revealed that, in contrast to a general assumption of linear friction welding being an exclusively solid-state joining process, intergranular liquation, caused by nonequilibrium phase reaction(s), occurred during joining. However, despite a significant occurrence of liquation in the alloy, no heat-affected zone (HAZ) cracking was observed. The study showed that the manufacturing of crack-free welds by linear friction welding is not due to preclusion of grain boundary liquation, as has been commonly assumed and reported. Instead, resistance to cracking can be related to the counter-crack-formation effect of the imposed compressive stress during linear friction welding and strain-induced rapid solidification. Moreover, adequate understanding of the microstructure of the joint requires proper consideration of the concepts of nonequilibrium liquation reaction and strain-induced rapid solidification, which are carefully elucidated in this work.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    29
    Citations
    NaN
    KQI
    []