Intraspecific trait variability and community assembly in hawkmoths (Lepidoptera: Sphingidae) across an elevational gradient in the eastern Himalayas, India

2019 
Recent progress in functional ecology has advanced our understanding of the role of intraspecific (ITV) and interspecific (STV) trait variation in community assembly across environmental gradients. Studies on plant communities have generally found STV as the main driver of community trait variation, whereas ITV plays an important role in determining species co-existence and community assembly. However, similar studies of faunal taxa, especially invertebrates, are very few in number. We investigated variation of hawkmoth (Lepidoptera: Sphingidae) traits along an environmental gradient spanning 2600 m in the eastern Himalayas and its role in community assembly, using the morpho-functional traits of body mass (BM), wing loading (WL) and wing aspect ratio (AR). We employ the recently proposed T-statistics to test for non-random assembly of hawkmoth communities and the relative importance of the two opposing forces for trait divergence (internal filters) and convergence (external filters). Community-wide trait-overlap decreased for all three traits with increasing environmental distance, suggesting the presence of elevation specific optimum morphology (i.e. functional response traits). Community weighted mean of BM and AR increased with elevation. Overall, the variation was dominated by species turnover but ITV accounted for 25%, 23% and <1% variability of BM, WL and AR, respectively. T-statistics, which incorporates ITV, revealed that elevational communities had a non-random trait distribution, and that community assembly was dominated by internal filtering throughout the gradient. This study was carried out using easily measurable morpho-traits obtained from calibrated field images of a large number (3301) of individuals. That these also happened to be important environmental response traits resulted in a significant signal in the metrics that we investigated. Such studies of abundant and hyperdiverse invertebrate groups across large environmental gradients should considerably improve our understanding of community assembly processes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    1
    Citations
    NaN
    KQI
    []