Evaluation of two air infiltration models on a church

2013 
Air infiltration in ancient churches and other historical and monumental buildings is of great importance considering moisture transfer, energy consumption, thermal comfort and indoor surface soiling. Two of the most established models for simulatingand predicting air infiltration in buildings are the Lawrence BerkeleyLaboratory (LBL) model and the Alberta air Infiltration Model (AIM-2). The applicability of these models in superimposing wind and buoyancy driven infiltration in large single zone buildings such as churches are evaluated in this study by comparing model predictions with field measurements in a 19thcentury stone church. Both tested air infiltration models yielded significant positive correlations between measured and predicted data, and it is concludedthat the AIM-2 model works better than the LBL model for the studied church. Both models tend however to over-predict the air infiltration rate significantly. The over‑predictions were larger in cases with high wind speed and it seems that the models are more fragile in wind dominating conditions. Inclusion of crawl space coefficients in the AIM-2 model improved however the predictions, especially at high wind speeds. It seems that models of the tested kind can be useful in predicting air infiltration in churches and similar buildings, but that some empirically attained model coefficients might need some adjustment to suit this kind of buildings better.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []