Density features of screened lung tumors in low-dose computed tomography.

2014 
Rationale and Objectives Using low-dose computed tomography (LDCT), small and heterogeneous lung tumors are detected in screening. The criteria for assessing detected tumors are crucial for determining follow-up or resection strategies. The purpose of this study was to investigate the capacity of density features in differentiating lung tumors. Materials and Methods From July 2008 to December 2011, 48 surgically confirmed tumors (29 malignancies, comprising 17 cases of adenocarcinoma and 12 cases of adenocarcinoma in situ [AdIs], and 19 benignancies, comprising 11 cases of atypical adenomatous hyperplasia [AAH] and eight cases of benign non-AAH) in 38 patients were retrospectively evaluated, indicating that the positive predictive value (PPV) of physicians is 60.4% (29/48). Three types of density features, tumor disappearance rate (TDR), mean, and entropy, were obtained from the CT values of detected tumors. Results Entropy is capable of differentiating malignancy from benignancy but is limited in differentiating AdIs from benign non-AAH. The combination of entropy and TDR is effective for predicting malignancy with an accuracy of 87.5% (42/48) and a PPV of 89.7% (26/29), improving the PPV of physicians by 29.3%. The combination of entropy and mean adequately clarifies the four pathology groups with an accuracy of 72.9% (35/48). For tumors with a mean below −400 Hounsfield units, the criterion of an entropy larger than 5.4 might be appropriate for diagnosing malignancy. For others, the pathology is either benign non-AAH or adenocarcinoma; adenocarcinoma has a higher entropy than benign non-AAH, with the exception of tuberculoma. Conclusions Combining density features enables differentiating heterogeneous lung tumors in LDCT.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    3
    Citations
    NaN
    KQI
    []