Optimization of collimator designs for real-time proton range verification by measuring prompt gamma rays

2012 
Precise monitoring of the particle range inside the body, preferably in real-time, is a primary interest in quality assurance of particle therapy. Prompt-gamma (PG) detection aims at this task, but such a system is technically challenging to implement. For mechanically collimated PG detection, neutron-induced background radiation originating in the collimator material is a major issue. We study by Monte-Carlo simulations (Geant4), the influence of different collimator designs and their geometric parameters - such as distance to source, size and septa thickness - on the correlation between transmitted PG profiles and the longitudinal depth-dose profile. The impact of background rejection by time-of-flight (TOF) is also addressed. A single-parallel-slit collimator scanned along the beam axis was primarily studied and results show that the background can be efficiently reduced by TOF discrimination. Due to reduced statistics, signal integration from neighbouring pencil-beams was further considered, accounting for typical clinical proton fluences. Furthermore, first direct-comparison results between multi-slat collimation and a knife-edge-slit collimator are presented, obtained both by simulation and analytical calculations of their geometric performances. Advantages and disadvantages of both approaches are highlighted and some design improvements are proposed. Energy thresholding was also addressed, showing that a low-energy threshold of 4 MeV increases the signal-to-background ratio in all simulation results, a factor mostly important if TOF rejection cannot be applied.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    13
    Citations
    NaN
    KQI
    []