QNet: An Adaptive Quantization Table Generator Based on Convolutional Neural Network.

2020 
The JPEG is one of the most widely used lossy image-compression standards, whose compression performance depends largely on a quantization table. In this work, we utilize a Convolutional Neural Network (CNN) to generate an image-adaptive quantization table in a standard-compliant way. We first build an image set containing more than 10,000 images and generate their optimal quantization tables through a classical genetic algorithm, and then propose a method that can efficiently extract and fuse the frequency and spatial domain information of each image to train a regression network to directly generate adaptive quantization tables. In addition, we extract several representative quantization tables from the dataset and train a classification network to indicate the optimal one for each image, which further improves compression performance and computational efficiency. Tests on diverse images show that the proposed method clearly outperforms the state-of-the-art method. Compared with the standard table at the compression rate of 1.0 bpp, the regression and classification network provide average Peak Signal-to-Noise Ratio (PSNR) gains of nearly 1.2 and 1.4 dB. For the experiment under Structural Similarity Index Measurement (SSIM), the improvements are 0.4% and 0.54%, respectively. The proposed method also has competitive computational efficiency, as the regression and classification network only take 15 and 6.25 milliseconds, respectively, to process a $768 \times 512$ image on a single CPU core at 3.20 GHz.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    2
    Citations
    NaN
    KQI
    []