Relationship of heat shock protein and heat stress in broilers.

2011 
Due to advances in breeding and nutrition, modern broiler chicken reaches a satisfactory growth performance in a short time because fast growing breeders are showing a more rapidly metabolism, however, the ability to regulate body temperature still remain inefficient under high environment temperatures (above 35°C) and humidity. In this case, cells promote a stress response that allows the expression of heat shock proteins (HSPs) witches has the prime molecular function as chaperones, protecting cells against the damages caused by free radicals produced during stress situations. When animals are exposed to stress in early life (pre-embryogenesis) the HSP70 gene is activated and the protein is expressed and synthesized more quickly when the chicken are exposed later in life to high environment temperature, became thermo resistance. Besides the environment (temperature and humidity) other factors such as genetics, nutrition and health, also predispose stress in chickens during production period. However, if all conditions of welfare were respected, the probability of a stress exposure is reduced in lower level. As final physiologic consequence of heat stress exposure, it can be observed a glycogen muscle depletion during slaughtering, affecting post mortem reactions that contributes to meat quality. This condition has been related to a lower pH, with a reduction in capacity of water retention, and a decrease in meat tenderness, favoring the formation of meat type PSE (pale, soft and exudative), which is not pleasing to the consumer. So, animals with heat tolerance are more resistant to high environment temperatures, reducing mortality of a considering part of the lot. According to described above, this review article will related some issues related to termic stress response of broilers emphasized HSPs contribution for a better meat quality as final product to attend costumer and market demands.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []