Cardiac energetics alteration in a chronic hypoxia rat model: A non-invasive in vivo31P magnetic resonance spectroscopy study.

2021 
BACKGROUND Energetics alteration plays a crucial role in the myocardial injury process in chronic hypoxia diseases (CHD). 31P magnetic resonance spectroscopy (MRS) can investigate alterations in cardiac energetics in vivo. OBJECTIVE To characterize the potential value of 31P MRS in evaluating cardiac energetics alteration of chronic hypoxic rats (CHRs). METHODS Twenty-four CHRs were induced by SU5416 combined with hypoxia and divided into four groups according to the modeling time of one, two, three and five weeks, respectively. Control group also contains six rats. 31P MRS was performed weekly and the ratio of concentrations of phosphocreatine (PCr) to adenosine triphosphate (ATP) (PCr/ATP) was obtained. In addition, the cardiac structure index and systolic function parameters, including the right ventricular ejection fraction (RVEF), right ventricular end-diastolic volume index (RVEDVi), right ventricular end-systolic volume index (RVESVi), and the left ventricular function parameters, were measured. RESULTS Decreased resting cardiac PCr/ATP ratio in CHRs was observed at the first week, compared to the control group (2.90±0.35 vs. 3.31±0.45, p = 0.045), while the RVEF, RVEDVi, and RVESVi decreased at the second week (p <  0.05). The PCr/ATP ratio displayed a significant correlation with RVEF (r = 0.605, p = 0.001), RVEDVi, and RVESVi (r = -0.661, r = -0.703; p <  0.001). CONCLUSIONS 31P MRS can easily detect the cardiac energetics alteration in a CHR model before the onset of ventricular dysfunction. The decreased PCr/ATP ratio likely reveales myocardial injury and cardiac dysfunction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []