A miniaturized cell-based fluorescence resonance energy transfer assay for insulin-receptor activation

2006 
Abstract This report describes the development, optimization, and implementation of a miniaturized cell-based assay for the identification of small-molecule insulin mimetics and potentiators. Cell-based assays are attractive formats for compound screening because they present the molecular targets in their cellular environment. A fluorescence resonance energy transfer (FRET) cell-based assay that measures the insulin-dependent colocalization of Akt2 fused with either cyan fluorescent protein or yellow fluorescent protein to the cellular membrane was developed. This ratiometric FRET assay was miniaturized into a robust, yet sensitive 3456-well nanoplate assay with Zfactors of ∼0.6 despite a very small assay window (less than twofold full activation with insulin). The FRET assay was used for primary screening of a large compound collection for insulin-receptor agonists and potentiators. To prioritize compounds for further development, primary hits were tested in two additional assays, a biochemical time-resolved fluorescence resonance energy transfer assay to measure insulin-receptor phosphorylation and a translocation-based imaging assay. Results from the three assays were combined to yield 11 compounds as potential leads for the development of insulin mimetics or potentiators.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    9
    Citations
    NaN
    KQI
    []