Structural and electric properties of the Ce0.8(Sm1 − xCax)0.2O2 − δ system (x = 0.0–1.0)
2011
CeO2-based solid solutions with a fluorite structure are promising materials as electrolytes of medium-temperature electrochemical devices. This work presents the results of systematic studies of structural and electric properties and oxygen nonstoichiometry of the Ce0.8(Sm1 − x Ca x )0.2O2 − δ system in a wide range of concentrations of 0 < x < 1 performed in order to establish the causes affecting the system conductivity and its behavior in a reducing medium. It is found that a single-phase solid solution of the fluorite type is formed in the whole concentration range. Parameters of its lattice cells decrease linearly at an increase in the concentration of Ca2+. Conductivity in air grows when calcium is added due to a decrease in the grain boundary resistance. The maximum conductivity in air was obtained for the composition of Ce0.8(Sm0.8Ca0.2)0.2O2 − δ and is 13.71 × 10−3 S/cm at 873 K. Studies of the dependence of conductivity of the partial pressure of oxygen showed that electron conductivity is observed at a higher oxygen partial pressure at an increase in the temperature and calcium concentration. The critical partial pressure of oxygen \(\left( {p_{O_2 }^* } \right)\) for the compositions of Ce0.8(Sm1 − x Ca x )0.2O2 − δ with x = 0; 0.2, and 0.5 is 1.83 × 10−16, 1.73 × 10−13, and 3.63 × 10−13 atm at 1173 K, respectively, and 2.76 × 10−21, 5.05 × 10−18, and 1.31 × 10−18 atm at 1023 K.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
16
References
5
Citations
NaN
KQI