Multi-Wavelength Ultra-Weak Fiber Bragg Grating Arrays for Long-Distance Quasi-Distributed Sensing

2021 
Fiber Bragg grating (FBG) array, consisting of a number of sensing units in a single optical fiber, can be practically applied in quasi-distributed sensing networks. Serious signal crosstalk occurring between large-serial of identical FBGs, however, has limited the further increase in the number of sensing units, thus restricting applications only for short-distance sensing networks. To reduce the signal crosstalk, we design two novel types of 10-kilometer-long FBG arrays with 10 000 equally spaced gratings, written on-line using a customized grating inscription system, which is affiliated to a drawing tower. Main factors causing signal crosstalk, such as spectral shadowing and multiple reflections, are firstly investigated in theory. Consistent with the theoretical findings, experimental results are proving that ultra-weak (the reflectivity of ∼−40 dB) and multi-wavelength gratings of a number more than 10 000 can be readily identified, with satisfied low crosstalk. The maximum attenuation of grating signal and minimum signal-to-noise ratio (SNR) in a single-wavelength array are 10.69 dB and 5.62 dB, respectively. As a comparison, by increasing the number of central wavelengths to three, the attenuation can be effectively reduced to 5.54 dB and the minimum SNR has been improved to 8.14 dB. The current study significantly enhances the multiplexing capacity of FBG arrays and demonstrates promising potentials for establishing large-capacity quasi-distributed sensing networks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    1
    Citations
    NaN
    KQI
    []