Removal of perfluoroalkyl acids (PFAAs) in constructed wetlands: Considerable contributions of submerged macrophytes and the microbial community.

2021 
The broad application of perfluoroalkyl acids (PFAAs) has attracted global concern regarding their adverse environmental effects. The possible removal processes of PFAAs in constructed wetlands were excavated and quantified using two typical submerged macrophytes (rooted Potamogeton wrightii and rootless Ceratophyllum demersum). Our results showed that 33.59-88.99% of PFAAs could be removed via not only sediment sorption or phytoextraction but also by the bioaccumulation of microbiota. The sediment acts as a vital sink for PFAAs, preloading 23.51-50.09% and 16.65-52.18% of PFAAs in treatments with P. wrightii (Pw1) and C. demersum (Cd1), respectively. C. demersum showed a better capacity to accumulate PFAAs (0.91-32.03%) than P. wrightii (<10%). Considerable PFAAs were observed to be distributed in microbes, underlining the non-negligible role of microbiota in bioaccumulating PFAAs. The contributions of planktonic microbes, biofilm microbes, and extracellular polymeric substances in biofilms were 0.39-20.96%, 0.03-7.95%, and 0.39-14.15% in Pw1 and 0.23-15.68%, 0.01-15.68%, and 0.53-26.77% in Cd1, respectively. The adsorption/uptake was significantly correlated with the perfluoroalkyl chain length (p<0.05), except for the uptake of biofilms in C. demersum. Furthermore, PFAAs and submerged macrophytes could decrease the richness of microbiota but increase the relative abundance of some strains in Betaproteobacteriales, Sphingomonadales, and Cytophagales. Our results were helpful for understanding the removal processes of PFAAs in constructed wetlands and their linkages with PFAA properties, thus further providing insight into the management and removal of emerging organic contaminants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    5
    Citations
    NaN
    KQI
    []