Spin-wave frequency division multiplexing in an yttrium iron garnet microstripe magnetized by inhomogeneous field

2019 
Spin waves are promising candidates for information processing and transmission in a broad frequency range. In the realization of magnonic devices, the frequency related division of the spin waves is a critical function for parallel information processing. In this work, we demonstrate a proof-of-concept spin-wave frequency division multiplexing method by magnetizing a homogeneous magnetic microstripe with an inhomogeneous field. The symmetry breaking additional field is introduced by a Permalloy stripe simply placed in lateral proximity to an yttrium iron garnet waveguide. Spin waves with different frequencies can propagate independently, simultaneously, and separately in space along the shared waveguide. This work demonstrates one potential way for parallel information transmission and processing in magnonics.Spin waves are promising candidates for information processing and transmission in a broad frequency range. In the realization of magnonic devices, the frequency related division of the spin waves is a critical function for parallel information processing. In this work, we demonstrate a proof-of-concept spin-wave frequency division multiplexing method by magnetizing a homogeneous magnetic microstripe with an inhomogeneous field. The symmetry breaking additional field is introduced by a Permalloy stripe simply placed in lateral proximity to an yttrium iron garnet waveguide. Spin waves with different frequencies can propagate independently, simultaneously, and separately in space along the shared waveguide. This work demonstrates one potential way for parallel information transmission and processing in magnonics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    4
    Citations
    NaN
    KQI
    []