Nano-fibrous SrCe0·8Y0·2O3-δ-Ni anode functional layer for proton-conducting solid oxide fuel cells

2019 
Abstract This study presents a nanofiber-derived functional anode consisting of proton-conducting SrCe0·8Y0·2O3-δ nanofibers and electro-catalytic Ni for proton-conducting solid oxide fuel cells. Fuel cell testing with the nano-fibrous SrCe0·8Y0·2O3-δ-Ni anode exhibits a maximum power density of 201.0 mW/cm2 at 800 °C, which is significantly higher than those of cells with a powder-derived Ba0·8Sr0·2Ce0·6Zr0·2Y0·2O3-δ-Ni anode or a nano-fibrous SrCe0·8Y0·2O3-δ anode. Its relatively lower ohmic resistance can be explained in terms of protonic and electronic “highways” throughout the nano-fibrous SrCe0·8Y0·2O3-δ-Ni anode. The significantly lower polarization resistance elements, R 1 and R 2 , further indicate that the nano-fibrous SrCe 0·8 Y 0·2 O 3-δ -Ni anode has superior catalytic activity for the hydrogen oxidation reaction and thus generates more protons that can participate in the cathode reactions. The results show that the performance enhancement in the fuel cell with the nano-fibrous SrCe0·8Y0·2O3-δ-Ni anode can be attributed to its low ohmic resistance, excellent electrode catalytic activity, and good gas transport property.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    2
    Citations
    NaN
    KQI
    []