THE MODELING OF AIR-COOLED ABSORPTION CHILLER INTEGRATION IN CHP SYSTEM

2004 
Absorption chillers are well suited for the use of exhaust heat from prime movers, and they improve the heat utilization of Cooling, Heating, and Power (CHP) systems. An air-cooled absorption chiller eliminates the cooling tower and brings considerable advantages as compared to water-cooled chillers. However, the expensive capital cost and crystallization of LiBr (Lithium Bromide) solution in certain operation conditions restrict the commercialization of air-cooled LiBr absorption machines. This paper discusses the feasibility of air-cooled absorption in CHP systems, where the control strategies based on the application can avoid the occurrence of crystallization. By using the fundamental thermodynamic principle, steady-state thermodynamic modeling and simulation have been done in Engineer Equation Solver (EES) to predict the operation of air-cooled absorption chiller integration in CHP systems with special consideration of the crystallization limits. The data of field operation acquired from a CHP system at UMD are used for validation.© 2004 ASME
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    14
    Citations
    NaN
    KQI
    []