Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software

2021 
Abstract The superconducting fault current limiter (SFCL) has been regarded as one of most popular superconducting applications. This article reviews the modern energy system with two major issues (the power stability and fault-current), and introduces corresponding approaches to mitigate these issues, including the importance of using SFCL. Then the article presents the experiment of a resistive-type SFCL used for a power electronic circuit. The experiment well matched the advanced finite-element method (FEM) SFCL model, from which the reliability of FEM SFCL model was confirmed. Afterwards, the FEM model and the power system software PSCAD were used to model a large-scale resistive-type SFCL. Under the same simulation conditions the FEM model well matched the PSCAD model. The FEM method has the advantages of offering specific electromagnetic modeling on superconducting part. The PSCAD SFCL model has much faster simulation speed and can directly cope with all ranges of power networks. This article presents a new vision and an all-in-one study to link the experiment, the numerical model, and the power/energy system software model, and their agreement can be extremely helpful for researchers and engineers to find useful evidences and reliable methods to confidently carry out successful SFCL designs for the electrical energy system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    81
    References
    3
    Citations
    NaN
    KQI
    []