Radiofrequency Technologies of Local Positioning in Healthcare

2020 
Introduction. Localization of objects position in closed space plays an important role in many areas of human activity, including medicine. Using indoor-positioning technologies as a part of telemedicine systems allows one to improve the quality of medical care and to reduce mortality of patients. Therefore, indoor-positioning technologies contribute to achieve the goals outlined in the Russian Federation government`s program "Healthcare development". Aim. To study the applicability of modern radiofrequency technologies for localization of patients inside a hospital building. Materials and methods. Scientific sources devoted to indoor-positioning based on radiofrequency technologies were analyzed. The methods used included: - bibliographic retrieval; - selection and verification of sources based on their relevance; - analysis of sources by methods of deconstruction and comparative analysis . Results. The result of the analysis indicated that radiofrequency positioning technologies allow one to locate objects using radio waves properties. The disadvantage of the technology is the penetration of radio signal through walls and floors. Given this, it is necessary to use complex algorithms to detect an object with accuracy to a specific room. Despite this disadvantage, radiofrequency technologies can be used for positioning in medical facilities since they are easy in deployment and service. Also, they are used in ready-made commercial solutions. ZigBee technology is an exception because it does not allow one to track moving objects in real-time. Conclusion. Based on the study it was concluded that BLE technology is the most suitable for indoor-positioning in medical facilities. It is energy-efficient, it has sufficiently fast data transfer rate, good communication radius and a large range of ready-made communication equipment. It is also worth noting that most wireless medical sensors exchange data via the BLE interface.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []