Coupling exothermic and endothermic reactions in an ethanol microreformer for H2 production

2016 
Abstract The steam reforming of ethanol is carried out in a microreactor for hydrogen production. The heat for the endothermic reactions is supplied by means of ethanol combustion in air, which is carried out in contiguous microchannels. The same Pd-based catalyst is assumed to be coated on both reforming and combustion channels. By means of a 1D heterogeneous mathematical model, the influence of the feed temperatures of both streams on the reactor performance is analyzed. The results show that the degree of preheating of both streams has a strong influence on the hydrogen yields and maximum temperatures. The effect of the flowrate and composition of the fuel stream on the hydrogen yields is also studied. Fairly high hydrogen yields were obtained ( 2.6 η H 2 3.4 ) with low methane slips, within a feasible range of temperatures for the Pd catalyst (700  T MAX
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    10
    Citations
    NaN
    KQI
    []