Structural Condition for Controllable Power Flow System Containing Controllable and Fluctuating Power Devices

2020 
This paper discusses a structural property for a power system to continue a safe operation under power fluctuation caused by fluctuating power sources and loads. Concerns over global climate change and gas emissions have motivated development and integration of renewable energy sources such as wind and solar to fulfill power demand. The energy generated from these sources exhibits fluctuations and uncertainty which is uncontrollable. In addition, the power fluctuations caused by power loads also have the same consequences on power system. To mitigate the effects of uncontrollable power fluctuations, a power flow control is presented which allocates power levels for controllable power sources and loads and connections between power devices. One basic function for the power flow control is to balance the generated power with the power demand. However, due to the structural limitations, i.e., the power level limitations of controllable sources and loads and the limitation of power flow channels, the power balance may not be achieved. This paper proposes two theorems about the structural conditions for a power system to have a feasible solution which achieves the power balance between power sources and power loads. The discussions in this paper will provide a solid theoretical background for designing a power flow system which proves robustness against fluctuations caused by fluctuating power devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    4
    Citations
    NaN
    KQI
    []