Infrared thermography-based evaluation of the elastic-plastic J-integral to correlate fatigue crack growth data of a stainless steel

2019 
Abstract The elastic-plastic J-integral is adopted to correlate fatigue crack growth data of ductile metals. An analytical link is known to exist between the J-integral and the strain energy density averaged in a control volume embracing the crack tip. On the other hand, the strain energy fluctuation is the source of temperature variations close to a fatigue crack tip of a metal material; hence the possibility to measure the J-integral from infrared thermographic scanning at the crack tip is envisaged and it is the focus of this paper. It is proposed that the elastic component of the J-integral is derived from a thermoelastic stress analysis, while the plastic component of the J-integral is derived from the heat energy loss. An analytical expression is formalised to apply this novel approach. Therefore, the elastic-plastic J-integral range was evaluated starting from infrared temperature maps measured in situ during crack propagation tests of AISI 304L stainless steel specimens. The range of the infrared thermography-based J-integral correlated well the crack growth data generated in small as well as large scale yielding conditions. Finally, the experimental values of the J-integral were successfully compared with the corresponding numerical values obtained from elastic-plastic finite element analyses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    13
    Citations
    NaN
    KQI
    []