A Symmetric Rank-one Quasi Newton Method for Non-negative Matrix Factorization
2014
As is well known, the nonnegative matrix factorization (NMF) is a dimension reduction method that has been widely used in image processing, text compressing, signal processing, and so forth. In this paper, an algorithm on nonnegative matrix approximation is proposed. This method is mainly based on a relaxed active set and the quasi-Newton type algorithm, by using the symmetric rank-one and negative curvature direction technologies to approximate the Hessian matrix. The method improves some recent results. In addition, some numerical experiments are presented in the synthetic data, imaging processing, and text clustering. By comparing with the other six nonnegative matrix approximation methods, this method is more robust in almost all cases.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
23
References
3
Citations
NaN
KQI