1.5 μm polarization coherent lidar incorporating time-division multiplexing

2017 
Atmospheric depolarization ratio and wind velocity are measured simultaneously by a single versatile coherent Doppler lidar (CDL). Backscattering components at parallel and perpendicular polarization states are obtained by using a single balanced detector, adopting time-division multiplexing technique. Thus systematic error induced by the non-uniform response of different detectors in traditional lidars is avoided. The operation mode of the instrument can be switched from polarization CDL to traditional CDL by the user depending on atmospheric conditions and desired performance. As demonstrated, the perpendicular component of the backscattering, usually wasted, not only can be used to retrieve the ADR, but also can be used to improve the carrier to noise ratio in wind detection. In the traditional mode, given a tolerance of 0.5 m/s precision, a detection range of 6 km is achieved by using a 300 ns laser pulse with energy of 100 μJ, where the temporal and spatial resolution of 2 s and 60 m, respectively. Continuous wind detection of the atmospheric boundary layer over 26 hours is presented to demonstrate the robustness and stability of the system. Dynamic evolution and wind structure are recorded.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    26
    Citations
    NaN
    KQI
    []