Optical Spectroscopy of Individual Photosynthetic Pigment Protein Complexes

2001 
Photosynthesis is the process by which plants, algae and photosynthetic bacteria convert solar energy into a form that can be used to sustain the life process. The light reactions occur in closely coupled pigment systems. The energy is absorbed by a network of antenna pigment proteins and efficiently transferred to the photochemical reaction centre where a charge separation takes place providing the free energy for subsequent chemical reactions. The total conversion process, starting with the absorption of a photon and ending with a stable charge separated state occurs within less than 50 ps and has an overall quantum yield of more than 90%. The success of this natural process is based on both the highly efficient absorption of photons by the light-harvesting antenna system and the rapid and efficient transfer of excitation energy to the reaction centre. It is known that most photosynthetic purple bacteria contain two types of antenna complexes, light-harvesting complex 1 (LH1) and light harvesting complex 2 (LH2) which both have a ring-like structure [1,2]. (Some bacterial species like Rhodopseudomonas acidophila contain a third light-harvesting complex termed B800-820.) The reaction centre (RC) presumably forms the core of the LH1 complex, while LH2 complexes are arranged around the perimeter of the LH1 ring in a two-dimensional structure. However the full three-dimensional structure of the whole photosynthetic unit is as yet unknown. The absorption of a photon (mainly) takes place in the LH2 pigments followed by a fast transfer of the excitation energy to the LH1 complex and subsequently to the reaction centre. It appears that the whole structure is highly optimized for capturing light energy and to funnel it to the reaction centre [3-7].
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    3
    Citations
    NaN
    KQI
    []