A State-Dependent Damping Method to Reduce Collision Force and Its Variability

2021 
This letter investigates the effect of biologically inspired angle-dependent damping profile in a robotic joint primarily on the magnitude and the variability of the peak collision force. Joints such as the knee that experience collision forces are known to have an angle-dependent damping profile. In this letter, we have quantified and compared three damping profiles. Our numerical and experimental results show that the proposed hyperbolic angle-dependent damping profile can minimize both the magnitude and the variability of the peak collision force (average magnitude and variability reduction of $\approx\! \mathbf {26\%}$ and $\approx\! \mathbf {47\%}$ compared to the peak constant damping profile). Very often, the variability of the force across the collision between the robot and the environment cause uncertainty about the state variables of the robotic joint. We show that by increasing the slope of the proposed hyperbolic angle-dependent damping profile we can also reduce the variability and the magnitude of post-collision peak displacement and peak velocity compared to those of constant damping profile. This was achieved while reducing the root mean square of power consumed by the robotic joint.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []