Understanding the electronic structure and magnetism of correlated nanosystems

2009 
In this paper we review recent developments towards a realistic description of the electronic structure and magnetism of correlated nanosystems. A new class of so-called continuous-time solvers for the quantum impurity problem is discussed, which provides a numerically exact solution without systematic errors due to imaginary time discretization. These solvers are able to handle general interactions, like the full Coulomb vertex. We further show how four-point or higher-order correlation functions of the impurity problem can be computed. This allows the calculation of dynamical susceptibilities which provide information about spin excitations. Moreover, we discuss a principally new many-body scheme recently proposed for the description of non-local correlations in strongly correlated systems. This approach provides a basis for a many-body description of extended correlated nanostructures on a substrate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    3
    Citations
    NaN
    KQI
    []