Very Small-Sized Resonator Filter Using Shear Horizontal Wave on Quartz

2001 
By composing interdigital transducers (IDTs) and reflectors consisting of films made of a heavy metal such as Au, Ta or W on an ST cut 90°X propagation (direction perpendicular to X-axis) quartz substrate, the authors realized a new type of shear horizontal (SH) wave. This wave has an excellent temperature characteristic, a large electromechanical coupling factor (k), and a large reflection coefficient at reflector electrodes. The square of this electromechanical coupling factor (k2=0.28~0.34%) and the reflection coefficient at reflector electrodes are 2.2~2.6 times and 30~35 times, respectively, as large as those of a Rayleigh wave on an ST cut X propagation quartz substrate. The authors applied this technology to filters for the first intermediate frequency (first IF) stage of a global system for mobile communications (GSM) in the nominal center frequency from 200 to 400 MHz. As a result, we succeeded in developing the first IF filter having a low insertion loss, an excellent temperature characteristic (frequency shift: 1 ppm/°C) and a small package size (3×3 mm2), which is as small as a radio frequency (RF) surface acoustic wave (SAW) filter, for the first time.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    32
    Citations
    NaN
    KQI
    []