Cdk9 regulates a promoter-proximal checkpoint to modulate RNA Polymerase II elongation rate

2017 
Multiple kinases modify RNA Polymerase II (Pol II) and its associated pausing and elongation factors to regulate Pol II transcription and transcription-coupled mRNA processing1,2. The conserved Cdk9 kinase is essential for regulated eukaryotic transcription3, but its mechanistic role remains incompletely understood. Here, we use altered-specificity kinase mutations and highly-specific inhibitors in fission yeast, Schizosaccharomyces pombe to examine the role of Cdk9, and related Cdk7 and Cdk12 kinases, on transcription at base-pair resolution using Precision Run-On sequencing (PRO-seq). Within a minute, Cdk9 inhibition causes a dramatic reduction in the phosphorylation of Pol II-associated factor, Spt5. The effects of Cdk9 inhibition on transcription are the more severe than inhibition of Cdk7 and Cdk12 and result in a shift of Pol II towards the transcription start site (TSS). A kinetic time course of Cdk9 inhibition reveals that early transcribing Pol II is the most compromised, with a measured rate of only ~400 bp/min, while Pol II that is already well into the gene continues rapidly to the end of genes with a rate > 1 kb/min. Our results indicate that while Pol II in S. pombe can escape promoter-proximal pausing in the absence of Cdk9 activity, it is impaired in elongation, suggesting the existence of a conserved global regulatory checkpoint that requires Cdk9 kinase activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    1
    Citations
    NaN
    KQI
    []