Graphene Metapixels for Dynamically Switchable Structural Color.

2021 
Structural coloration providing vibrant and tailored colors enables broad applications. Existing strategies of structural coloration either use resonances or diffraction induced by arrayed nanostructures with element sizes at a wavelength scale or are based on interference from vacuum-deposited large-area thin films. It is extremely challenging to achieve full color pixels with diffraction-limited resolution without sophisticated multiple-step nanostructure fabrication or externally applied field control. Realization of dynamically switchable full color displays with diffraction-limited resolution is even harder. This work demonstrates a structural color strategy with developed anisotropic graphene metapixels. The anisotropic optical property is given by the intrinsic birefringence of the layered structure of graphene metamaterials, and each metapixel is spatially encoded by direct laser printing with diffraction-limited resolution (250 nm). The colors can be dynamically and instantly switched by controlling the scattering of the light source to excite different modes based on the strong anisotropic optical properties of the graphene metapixels. The low-cost large-scale fabrication method allows experimental demonstration of a large-area (4 in.) flexible full color optical switchable display. Such a simple, effective and flexible method promises broad practical applications in color display and color image sensing related fields.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    0
    Citations
    NaN
    KQI
    []