Dielectric response and electric conductivity of ceramics obtained from BiFeO3 synthesized by microwave hydrothermal method

2016 
Abstract BiFeO 3 powder which formed ball-like structures resembling flowers was obtained by microwave hydrothermal synthesis. The flowers were of a dozen or so μm in diameter and the thickness of the crystallites forming petals could be controlled. The material was characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Dielectric response of ceramics obtained from the powder contained three extrinsic contributions, which could be correlated with the differences in temperature variation of the ac conductivity. The dielectric relaxation between 150 K and 300 K was related to reorientations of Fe 3+ –Fe 2+ dipoles and characterized by an activation energy of 0.4 eV, which was independent of the petal thickness. The dielectric and electric response in the range 300 K ÷ 450 K usually ascribed to the grain boundary and interfacial polarization effect was diffused and could not be characterized. Above 450 K the activation energy of dc conductivity was 1.73 eV and 1.52 eV for ceramics consisting of crystallites of mean thickness of 160 nm and 260 nm, respectively. The energies, which are considerably higher than those reported earlier for BFO nanoceramics, were discussed considering the interactions between oxygen vacancies and size scaled ferroelectric domain walls, which in BiFeO 3 are associated with electrostatic potential steps.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    14
    Citations
    NaN
    KQI
    []