Induced Chromosomal Aneuploidy Results in Global and Consistent Deregulation of the Transcriptome of Cancer Cells

2019 
Abstract Chromosomal aneuploidy is a defining feature of epithelial cancers. The pattern of aneuploidies is cancer-type specific. For instance, the gain of chromosome 13 occurs almost exclusively in colorectal cancer. We used microcell-mediated chromosome transfer to generate gains of chromosome 13 in the diploid human colorectal cancer cell line DLD-1. Extra copies of chromosome 13 resulted in a significant and reproducible up-regulation of transcript levels of genes on chromosome 13 ( P  = .0004, FDR = 0.01) and a genome-wide transcriptional deregulation in all 8 independent clones generated. Genes contained in two clusters were particularly affected: the first cluster on cytoband 13q13 contained 7 highly up-regulated genes ( NBEA, MAB21L1, DCLK1, SOHLH2, CCDC169, SPG20 and CCNA1 , P  = .0003) in all clones. A second cluster was located on 13q32.1 and contained five upregulated genes ( ABCC4, CLDN10, DZIP1, DNAJC3 and UGGT2, P  = .003). One gene, RASL11A, localized on chromosome band 13q12.2 , escaped the copy number-induced overexpression and was reproducibly and significantly down-regulated on the mRNA and protein level ( P  = .0001, FDR = 0.002). RASL11A expression levels were also lower in primary colorectal tumors as compared to matched normal mucosa ( P  = .0001, FDR = 0.0001. Overexpression of RASL11A increases cell proliferation and anchorage independent growth while decreasing cell migration in +13 clones. In summary, we observed a strict correlation of genomic copy number and resident gene expression levels, and aneuploidy dependent consistent genome-wide transcriptional deregulation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    10
    Citations
    NaN
    KQI
    []