Analysis of autocorrelation times in Neural Markov Chain Monte Carlo simulations
2021
We provide a deepened study of autocorrelations in Neural Markov Chain Monte Carlo simulations, a version of the traditional Metropolis algorithm which employs neural networks to provide independent proposals. We illustrate our ideas using the two-dimensional Ising model. We propose several estimates of autocorrelation times, some inspired by analytical results derived for the Metropolized Independent Sampler, which we compare and study as a function of inverse temperature $\beta$. Based on that we propose an alternative loss function and study its impact on the autocorelation times. Furthermore, we investigate the impact of imposing system symmetries ($Z_2$ and/or translational) in the neural network training process on the autocorrelation times. Eventually, we propose a scheme which incorporates partial heat-bath updates. The impact of the above enhancements is discussed for a $16 \times 16$ spin system. The summary of our findings may serve as a guide to the implementation of Neural Markov Chain Monte Carlo simulations of more complicated models.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
20
References
0
Citations
NaN
KQI