An Enhanced Sampling Approach to the Induced Fit Docking Problem in Protein-Ligand Binding: the case of mono-ADP-ribosylation hydrolases inhibitors

2021 
A variety of enhanced sampling methods can predict free energy landscapes associated with protein/ligand binding events, characterizing in a precise way the intermolecular interactions involved. Unfortunately, these approaches are challenged by not uncommon induced fit mecchanisms. Here, we present a variant of the recently reported volume-based metadynamics (MetaD) method which describes ligand binding even when it affects protein structure. The validity of the approach is established by applying it to a substrate/enzyme complexes of pharmacological relevance: this is the mono-ADP-ribose (ADPr) in complex with mono-ADP-ribosylation hydrolases (MacroD1 and MacroD2), where induced-fit phenomena are known to be operative. The calculated binding free energies are consistent with experiments, with an absolute error less than 0.5 kcal/mol. Our simulations reveal that in all circumstances the active loops, delimiting the boundaries of the binding site, rearrange from an open to a closed conformation upon ligand binding. The calculations further provide, for the first time, the molecular basis of the experimentally observed affinity changes in ADPr binding on passing from MacroD1 to MacroD2 and all its mutants. Our study paves the way to investigate in a completely general manner ligand binding to proteins and receptors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []