Recognition of hyperacetylated N-terminus of H2AZ by TbBDF2 from Trypanosoma brucei

2017 
Histone modification plays an important role in various biological processes, including gene expression regulation. Bromodomain, as one of histone readers, recognizes specifically the e- N -lysine acetylation (KAc) of histone. Although the bromodomains and histone acetylation sites of Trypanosoma brucei ( T. brucei ), a lethal parasite responsible for sleeping sickness in human and nagana in cattle, have been identified, how acetylated histones are recognized by bromodomains is still unknown. Here, the bromodomain factor 2 (TbBDF2) from T. brucei was identified to be located in the nucleolus and bind to the hyperacetylated N-terminus of H2AZ which dimerizes with H2BV. The bromodomain of TbBDF2 (TbBDF2-BD) displays a conserved fold that comprises a left-handed bundle of four α-helices (αZ, αA, αB, αC), linked by loop regions of variable length (ZA and BC loops), which form the KAc-binding pocket. NMR chemical shift perturbation further revealed that TbBDF2-BD binds to the hyperacetylated N-terminus of H2AZ through its KAc-binding pocket. By structure-based virtual screening combining with the ITC experiment, a small molecule compound, GSK2801, was shown to have high affinity to TbBDF2-BD. GSK2801 and the hyperacetylated N-terminus of H2AZ have similar binding sites on TbBDF2-BD. In addition, GSK2801 competitively inhibits the hyperacetylated N-terminus of H2AZ binding to TbBDF2-BD. After treatment of GSK2801, cell growth was inhibited and localization of TbBDF2 was disrupted. Our results report a novel bromodomain-histone recognition by TbBDF2-BD and imply that TbBDF2 may serve as a potential chemotherapeutic target for the treatment of trypanosomiasis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    10
    Citations
    NaN
    KQI
    []