Control of separation selectivity in micellar electrokinetic chromatography by modification of the micellar phase with solubilized organic compounds

1997 
Abstract On the basis of the data on the distribution of various neutral solutes between sodium dodecyl sulfate (SDS) micelles and water, the control of separation selectivity in micellar electrokinetic chromatography (MEKC) by modification of the micellar phase with organic additives has been proposed and applied to the separation of simple model compounds. It was found that the distribution constants between the micelles and water ( K d,mc ), which were determined by means of MEKC, of the solutes possessing hydrophilic functional groups are much larger than those between heptane and water ( K d,hep ), whereas the K d,mc values of the solutes possessing no hydropholic groups are comparable to their K d,hep values. This indicates that the former solutes are preferentially solubilized in the Stern layer of the micelles and that the latter are located in the hydrocarbon core. In MEKC separations of aromatic compounds and metal acetylacetonates, considerable changes in separation selectivity were caused by the addition of compounds possessing both hydrophilic functional groups such as alcohols, phenol and ketones to the SDS micellar solution. The variations of the retention factors of the analytes could be explained in terms of saturation of the solubilization sites in the Stern layer with the modifiers, specific interaction of the modifiers with the analytes via hydrogen bonding in the micelles, and expansion of the core volume with the hydrocarbon parts of the modifiers. Such effects of the micellar modification could improve the resolution as well as the selectivity of MEKC separations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    33
    Citations
    NaN
    KQI
    []