An Automated Algorithm for Measurement of Surgical Tip Excursion in Ultrasonic Vibration Using the Spatial 2-Dimensional Fourier Transform in an Optical Image☆

2016 
Abstract The International Electrotechnical Commission (IEC) has defined a standard IEC 61847 (First Edition, 1998) for characterization of ultrasonic surgical systems. This standard prescribes several methods for measurement of primary tip vibration excursion. The first method described in the standard uses an optical microscope and relies on the motion blur of a vibrating object as it is imaged at low frame rates (e.g. 30 Hz) of conventional video equipment. This is a widely used method, that predates the standard, in ultrasonic surgical instrument design, and it is one of the key parameters that surgeons who use these devices are aware of. It is relatively easily measured using a microscope system. Although this method is widespread, the accuracy of this method is highly dependent on multiple factors such as operator training, microscope lighting and modulation of surgical tip motion. It is also a manual and time consuming measurement such that a continuous measurement that describes dynamics at the scale of micro-seconds becomes impossible. Here we describe an algorithm to automate this measurement so that it can be done at high speed without operator training, reducing human error and operator variation. The algorithm derives from techniques used in motion blur estimation and reduction in the image processing literature. A 2 dimensional spatial Fourier transform is computed from the microscope image of an ultrasonically vibrating tip. A peak detection algorithm is used along with pre-processing to reduce noise. Separation of peaks in the Fourier domain is used to estimate tip excursion. We present data that shows an error of about 1% between manual and automated methods, when measurements are in the range of 300 microns and about 20% when the measurements are in the range of 30 microns.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    2
    Citations
    NaN
    KQI
    []