Cell-type specific circadian bioluminescence rhythms recorded from Dbp reporter mice reveal circadian oscillator misalignment

2021 
Circadian rhythms are endogenously generated physiological and molecular rhythms with a cycle length of about 24 h. Bioluminescent reporters have been exceptionally useful for studying circadian rhythms in numerous species. Here, we report development of a reporter mouse generated by modification of a widely expressed and highly rhythmic gene encoding D-site albumin promoter binding protein (Dbp). In this line of mice, firefly luciferase is expressed from the Dbp locus in a Cre-recombinase- dependent manner, allowing assessment of bioluminescence rhythms in specific cellular populations. A mouse line in which luciferase expression was Cre-independent was also generated. The Dbp reporter alleles do not alter Dbp gene expression rhythms in liver or circadian locomotor activity rhythms. In vitro and in vivo studies show the utility of the reporter alleles for monitoring rhythmicity. Our studies reveal cell-type specific characteristics of rhythms among neuronal populations within the suprachiasmatic nuclei in vitro. In vivo studies show stable Dbp-driven bioluminescence rhythms in the liver of Albumin-Cre;DbpKI/+ "liver reporter" mice. After a shift of the lighting schedule, locomotor activity achieved the proper phase relationship with the new lighting cycle more rapidly than hepatic bioluminescence did. As previously shown, restricting food access to the daytime altered the phase of hepatic rhythmicity. Our model allowed assessment of the rate of recovery from misalignment once animals were provided with food ad libitum. These studies provide clear evidence for circadian misalignment following environmental perturbations and reveal the utility of this model for minimally invasive, longitudinal monitoring of rhythmicity from specific mouse tissues. Significance StatementDisruption of temporal coordination among circadian oscillators and exposure to light at biologically inappropriate times are important drivers of the increased incidence of adverse health outcomes observed in shift workers and rodent models of chronic circadian disruption. Here, we demonstrate the utility of a new mouse line that enables tissue-specific monitoring of circadian molecular rhythms in vivo and ex vivo. This reporter mouse provides a major advance in our capabilities for monitoring rhythms in a variety of tissues under normal and disruptive conditions. Our studies provide an unprecedented longitudinal assessment of tissue-specific rhythmicity, a key step in the identification of mechanisms underlying the circadian disruption inherent to life in modern 24/7 societies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    106
    References
    1
    Citations
    NaN
    KQI
    []