DNAzyme-Powered Three-Dimensional DNA Walker Nanoprobe for Detection Amyloid β-Peptide Oligomer in Living Cells and in Vivo.

2020 
Amyloid β-peptide oligomer (AβO) is widely acknowledged as the promising biomarker for the diagnosis of Alzheimer's disease (AD). In this work, we designed a three-dimensional (3D) DNA walker nanoprobe for AβO detection and real-time imaging in living cells and in vivo. The presence of AβO triggered the DNAzyme walking strand to cleave the fluorophore (TAMRA)-labeled substrate strand modified on the gold nanoparticle (AuNP) surface and release TAMRA-labeled DNA fragment, resulting in the recovery of fluorescent signal. The entire process was autonomous and continuous, without external fuel strands or protease, and finally produced plenty of TAMRA fluorescence, achieving signal amplification effect. The nanoprobe enabled the quantitative detection of AβO in vitro, and the limit of detection was 22.3 pM. Given the good biocompatibility of 3D DNA walker nanoprobe, we extended this enzyme-free signal amplification method to real-time imaging of AβO. Under the microscope, nanoprobe accurately located and visualized the distribution of AβO in living cells. Moreover, in vivo imaging results showed that our nanoprobe could be used to effectively distinguish the AD mice from the wild-type mice. This nanoprobe with the advantages of great sensitivity, high specificity and convenience, which provides an outstanding prospect for AD's early diagnosis development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    34
    Citations
    NaN
    KQI
    []