Three-Dimensional Porous Ti3C2Tx-NiO Composite Electrodes with Enhanced Electrochemical Performance for Supercapacitors

2019 
Ti3C2Tx and Ti3C2Tx-NiO composites with three-dimensional (3D) porous networks were successfully fabricated via vacuum freeze-drying. The microstructure, absorption, and electrochemical properties of the developed composites were investigated. Nickel oxide (NiO) nanoparticles could be evenly distributed on the three-dimensional network of three-dimensional Ti3C2Tx using solution processing. When employed as electrochemical capacitor electrodes in 1 M environmentally friendly sodium sulfate, Na2SO4, solution, the three-dimensional porous Ti3C2Tx-NiO composite electrodes exhibited considerable volume specific capacitance as compared to three-dimensional porous Ti3C2Tx. The three-dimensional porous Ti3C2Tx-NiO composite delivered a remarkable cycling performance with a capacitance retention of up to 114% over 2500 cycles. The growth trend of the capacitance with NiO content shows that nickel oxide plays a crucial role in the composite electrodes. These results present a roadmap for the development of convenient and economical supercapacitors in consideration with the possibilities of morphological control and the extensibility of the process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    17
    Citations
    NaN
    KQI
    []