When Liquid Rays Become Gas Rays: Can Evaporation Ever Be Non-Maxwellian?

2021 
A rare mistake by Otto Stern led to a confusion between density and flux in his first measurement of a Maxwellian speed distribution. This error reveals the key role of speed itself in Stern’s development of “the method of molecular rays”. What if the gas-phase speed distributions are not Maxwellian to begin with? The molecular beam technique so beautifully advanced by Stern can also be used to explore the speed distribution of gases evaporating from liquid microjets, a tool developed by Manfred Faubel. We employ liquid water and alkane microjets containing dissolved helium atoms to monitor the speed of evaporating He atoms into vacuum. While most dissolved gases evaporate in Maxwellian speed distributions, the He evaporation flux is super-Maxwellian, with energies up to 70% higher than the flux-weighted average energy of 2 RTliq. The explanation of this high-energy evaporation involves two beautiful concepts in physical chemistry: detailed balancing between He atom evaporation and condensation (starting with gas-surface collisions) and the potential of mean force on the He atom (starting with He atoms just below the surface). We hope that these measurements continue to fulfill Stern’s dream of the “directness and simplicity of the molecular ray method.”
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    0
    Citations
    NaN
    KQI
    []