Broadband photoresponse of graphene photodetector from visible to long-wavelength infrared wavelengths

2019 
Graphene-based transistors were investigated as simple photodetectors for a broad range of wavelengths. Graphene transistors were prepared using p-doped silicon (Si) substrates with a SiO2 layer, and source and drain electrodes. Monolayer graphene was fabricated by chemical vapor deposition and transferred onto the substrates, and the graphene channel region was then formed. The photoresponse was measured in the broadband wavelength range from the visible, near-infrared (NIR), and mid- to long-wavelength IR (MWIR to LWIR) regions. The photoresponse was enhanced by the photogating induced by the Si substrate at visible wavelengths. Enhancement by the thermal effect of the insulator layer became dominant in the LWIR region, which indicates that the photoresponse of graphene-based transistors can be controlled by the surrounding materials, depending on the operation wavelength. These results are expected to contribute to provide the key mechanism of high-performance graphene-based photodetectors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    14
    Citations
    NaN
    KQI
    []