language-icon Old Web
English
Sign In

Cavity collapse in a bubbly liquid

2014 
The effect of an ambient liquid state on a spherical cavity dynamics under atmospheric hydrostatic pressure p and extremely low initial gas pressure p(0) inside was investigated. The equilibrium bubbly (cavitating) medium with sound velocity C as the function of gas phase concentration k was considered as the ambient liquid model. The cavity dynamics is analyzed within the framework of Herring-equation for the following diapasons of main parameters : k = 0—5%, р(0) = 0.02—10(−6) atm. Numerical analysis has shown that the deceleration C by two order does not have an influence neither on an asymptotic value of collapsed cavity radius nor on the acoustical losses under its collapse. It means than in the whole the integral acoustical losses remain invariable. However the collapse cavity dynamics and the radiation structure are essentially changed: from numerous pulsations with a decreasing amplitudes up to a single collapse and from a wave packet up to a single wave, correspondingly. It has turned out that th...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []