High-power electron beam tests of a liquid-lithium target and characterization study of 7Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy

2014 
Abstract A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the 7 Li(p,n) 7 Be reaction and it will overcome the major problem of removing the thermal power >5 kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4 kW/cm 2 and volumetric power density around 2 MW/cm 3 at a lithium flow of ~4 m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow ( σ =~2 mm) 1.91 MeV, 3 mA proton beam. A high-intensity proton beam irradiation (1.91–2.5 MeV, 2 mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91 MeV) 7 Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    13
    Citations
    NaN
    KQI
    []