A modified whale optimization algorithm to overcome delayed convergence in artificial neural networks
2021
Artificial neural network (ANN) is modeled to predict and classify problems. However, in the training phase of ANNs discovering faultless values of the weights of a network is extremely troublesome. Traditional weight updating methods often get stuck into local optima and converge to optimal solutions very slowly. Therefore, to overcome these drawbacks a modified version of a nature-based algorithm which merges meta-heuristics with weight-updating technique of ANN has been used in this paper. Whale optimization algorithm (WOA) is a well-established, efficient and competitive algorithm inspired by the hunting mechanism of the whales including their behavior in finding and attacking their prey with their bubble-net feeding technique. In WOA, the next location of the search individuals or whales is modified depending on some probability. Due to the high exploration rate of WOA, there is a disproportion between exploration and exploitation in the WOA and it also converges to the solution slowly. Thus, to establish an equilibrium between exploration and exploitation a new variant of WOA called modified whale optimization algorithm (MWOA) is proposed to overcome the problem of delayed convergence. In MWOA, roulette wheel selection is combined with WOA to enhance the convergence speed of WOA. MWOA is tested on 11 benchmark functions, and the outcomes are compared with WOA. The results prove that MWOA has gained success in overcoming the problem of the slow convergence of WOA. Also, the results show that the proposed MWOA technique, when applied to ANN, can overcome the problems of traditional techniques and has improved the results.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
60
References
1
Citations
NaN
KQI