Globally dispersed mobile drug-resistance genes in gram-negative bacterial isolates from patients with bloodstream infections in a US urban general hospital.

2012 
Mobile drug-resistance genes with identical nucleic acid sequences carried by multidrug-resistant Escherichia coli strains that cause community-acquired infections are becomingly increasingly dispersed worldwide. Over a 2-year period, we analysed Gram-negative bacterial (GNB) pathogens from the blood of inpatients at an urban public hospital to determine what proportion of these isolates carried such globally dispersed drug-resistance genes. Of 376 GNB isolates, 167 (44 %) were Escherichia coli, 50 (13 %) were Klebsiella pneumoniae, 25 (7 %) were Pseudomonas aeruginosa, 25 (7 %) were Proteus mirabilis and 20 (5 %) were Enterobacter cloacae; the remainder (24 %) comprised 26 different GNB species. Among E. coli isolates, class 1 integrons were detected in 64 (38 %). The most common integron gene cassette configuration was dfrA17-aadA5, found in 30 (25 %) of 119 drug-resistant E. coli isolates and in one isolate of Moraxella morganii. Extended-spectrum β-lactamase (ESBL) genes were found in 16 E. coli isolates (10 %). These genes with identical sequences were found in nearly 40 % of bloodstream E. coli isolates in the study hospital, as well as in a variety of bacterial species from clinical and non-clinical sources worldwide. Thus, a substantial proportion of bloodstream infections among hospitalized patients were caused by E. coli strains carrying drug-resistance genes that are dispersed globally in a wide variety of bacterial species.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    20
    Citations
    NaN
    KQI
    []