Photocrosslinkable gelatin/collagen based bioinspired polyurethane-acrylate bone adhesives with biocompatibility and biodegradability.

2021 
Abstract Hard or soft tissue adhesives have been presented as a promising candidate to replace traditional wound closure methods. A series of hard tissue bioadhesive formulations based on natural polymers have recently been designed and investigated in our laboratory. In current work, we produced an UV-curable polyurethane-acrylate formulations as a bioadhesive. Aliphatic isophorone diisocyanate (IPDI) was used as the isocyanate source and β-cyclodextrin was used for host-guest relationship with gentamicin by crosslinking. Proteins (gelatin (GEL), collagen (COL)) and PEGs of various molecular weight ranges (P200, P400, P600) were selected as the polyol backbone for polyurethane synthesis due to their multiple biological activities such as biocompatibility, biodegradability, biomimetic property. Several techniques have been used to characterize the structural, thermal, morphological, and various other physicochemical properties of the adhesive formulations. Besides, the possibility of its use as a hard tissue adhesive was investigated by evaluating the tissue adhesion strength in vitro and ex vivo via a universal testing analyzer in tensile mode. Corresponding adhesive formulations were evaluated by in vitro and in vivo techniques for biocompatibility. The best adhesion strength results were obtained as 3821.0 ± 214.9, and 3722.2 ± 486.8 kPa, for IPDI-COL-P200 and IPDI-GEL-P200, respectively. Good antibacterial activity capability toward Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were confirmed using disc diffusion method. Moreover, cell viability assay demonstrated that the formulations have no significant cytotoxicity on the L929 fibroblast cells. Most importantly, we finally performed the in vivo biodegradability and in vivo biocompatibility evaluations of the adhesive formulations on rat model. Considering their excellent cell/tissue viability, fast curable, strong adhesion, high antibacterial character, and injectability, these adhesive formulations have significant potential for tissue engineering applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []