Dynamical Decoupling of Quantum Two-Level Systems by Coherent Multiple Landau-Zener Transitions.

2019 
Increasing and stabilizing the coherence of superconducting quantum circuits and resonators is of utmost importance for various technologies ranging from quantum information processors to highly sensitive detectors of low-temperature radiation in astrophysics. A major source of noise in such devices is a bath of two-level systems (TLSs) with broad distribution of energies, existing in disordered dielectrics and on surfaces. Here we study the dielectric loss of superconducting resonators in the presence of a periodic bias field, which sweeps near-resonant TLSs in and out of resonance with the resonator, resulting in a periodic pattern of Landau-Zener transitions. We show that at high sweep rates compared to the TLS relaxation rate, the coherent evolution of the TLS over multiple transitions yields a significant decrease in the dielectric loss. This behavior is observed both in the classical high-power regime and in the quantum single-photon regime, suggesting a viable technique to dynamically decouple TLSs from a qubit.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    3
    Citations
    NaN
    KQI
    []