Nucleotide binding by the poliovirus RNA polymerase.

1992 
Abstract Cross-linking of ribonucleoside triphosphates (NTPs) to specific binding sites on the poliovirus RNA-dependent RNA polymerase has been performed by ultraviolet irradiation and by reduction of oxidized nucleotide-protein complexes. The latter method approached a cross-linking efficiency of 1 NTP/molecule of enzyme. Nucleotide competition experiments suggested that the same binding site is occupied by all NTPs. Analysis of peptides produced by proteinase Glu-C and trypsin digestion and labeled with [32P]GTP indicated that a lysine residue between Met-189 and Lys-228 in the polymerase was cross-linked to NTP. Nucleotide binding was exploited for rapid purification of the enzyme by GTP-agarose affinity chromatography. In addition, a set of cloned, modified polymerase molecules with reduced or absent polymerization activity was analyzed for binding efficiency to a GTP-agarose column. Some mutations eliminated GTP binding, whereas others generated proteins with varying affinities for GTP. Incubation of the poliovirus polymerase with high concentrations of NTP, particularly GTP, resulted in a dramatic protection against heat denaturation and activity loss. These data suggest that nucleotide binding results in an alteration of the enzyme conformation or the stabilization of an ordered conformation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    19
    Citations
    NaN
    KQI
    []