Laplace metasurfaces for optical analog computing based on quasi-bound states in the continuum

2021 
Laplace operation, the isotropic second-order differentiation, on spatial functions is an essential mathematical calculation in most physical equations and signal processing. Realizing the Laplace operation in a manner of optical analog computing has recently attracted attention, but a compact device with a high spatial resolution is still elusive. Here, we introduce a Laplace metasurface that can perform the Laplace operation for incident light-field patterns. By exciting the quasi-bound state in the continuum, an optical transfer function for nearly perfect isotropic second-order differentiation has been obtained with a spatial resolution of wavelength scale. Such a Laplace metasurface has been numerically validated with both 1D and 2D spatial functions, and the results agree well with that of the ideal Laplace operation. In addition, the edge detection of a concerned object in an image has been demonstrated with the Laplace metasurface. Our results pave the way to the applications of metasurfaces in optical analog computing and image processing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    1
    Citations
    NaN
    KQI
    []