A Simplified Numerical Approach for the Prediction of Rainfall-Induced Retrogressive Landslides
2016
Retrogressive landslides are common geological phenomena in mountainous areas and on onshore and offshore slopes. The impact of retrogressive landslides is different from that of other landslide types due to the phenomenon of retrogression. The hazards caused by retrogressive landslides may be increased because retrogressive landslides usually affect housing, facilities, and infrastructure located far from the original slopes. Additionally, substantial geomorphic evidence shows that the abundant supply of loose sediment in the source area of a debris flow is usually provided by retrogressive landslides that are triggered by the undercutting of water. Moreover, according to historic case studies, some large landslides are the evolution result of retrogressive landslides. Hence the ability to understand and predict the evolution of retrogressive landslides is crucial for the purpose of hazard mitigation. This paper discusses the phenomenon of a retrogressive landslide by using a model experiment and suggests a reasonably simplified numerical approach for the prediction of rainfall-induced retrogressive landslides. The simplified numerical approach, which combines the finite element method for seepage analysis, the shear strength reduction finite element method, and the analysis criterion for the retrogression and accumulation effect, is presented and used to predict the characteristics of a retrogressive landslide. The results show that this numerical approach is capable of reasonably predicting the characteristics of retrogressive landslides under rainfall infiltration, particularly the magnitude of each landslide, the position of the slip surface, and the development processes of the retrogressive landslide. Therefore, this approach is expected to be a practical method for the mitigation of damage caused by rainfall-induced retrogressive landslides.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
27
References
7
Citations
NaN
KQI